宇历三年的🔧🔨时候,离宗和连宗很罕见的达成了全新的共识。
一个公式,在离宗算理和连宗算理📝之中,具🛡备完全一致的内蕴的话,那么📲,就可以说,这个公式,具备“绝对性”。
这种“绝对性🁿🛗”,毫无疑问,给予了离宗某种“希望”。🎯🔩🃏
对于他们🎼来说,这简直就是不周之算的灭世一击下🆔,所能找到的最🀽🂍后救赎与唯一福音。
“绝对性”的存在,或许就是在表明,数🖉学实体是在不同🎯🔩🃏的数学公理系统里面普遍存在的。
而如果是这样🁿🛗的话,这个数学实体本身🐥🂁,或🛡许就具有“实际完备”的性质。
这是他们最后的希望了。
或许他们需要寻找🜽到📑一条新的道路,来探索出这个数学实体的性质。
在这一点上,冯落衣与🙫🍑歌庭派的目的是出奇的一致。
他们甚至暂且放下了些许分歧,共同探索这🛡一领域。
而在这一过程🁿🛗之中,海霆真人也终于崭露头角。
自从连宗证明直觉主义逻辑不比歌庭派的经典逻辑安全之后,他就好像🃱🛥🞡变了个人一样,沉默而寡言。
而在黎京首🔧🔨创之中,他自闭🀛♊的倾向就更严重了。
但是,这并不妨碍他作为一个算学家,继续🛡发🅚光发热。
他从苏君宇的连续统研究之中受到启发🐥🂁,引入了冯落衣在无限公理中研究良基集合的成果,创立了全新的流派构造主义。
在某个理🎼论内,以有穷个符号,所定义之一切实体,直到反射序列的高度遍历“所有序数的序数”,便是一个可构造类。
而可构造公理,便是宣告,良基序列下合法集合所构成的总体,与“可构造性集🎱🔵🅂合”,♱🌊☾是相🗤🝥等的。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌恶的集合论,并且在冯♱🌊☾落衣良基集合的基础上完🞂👑成了初步的安全性证明。
定义即构造,构造即证明,证明即路秩。
也正是因为🔧🔨🔧🔨如此,他在算器理论也小有突破,进入千机阁的视野之🀽🂍中。
歌庭派对此有些惊恐。
冯落衣与图灵的存在📑【或许还可以算上王🖉崎】,使得千机阁这💖👵🍊个万法门分支门派,一直都是离宗的后花园。
也曾有连宗修士走入过那里,甚至📝有算君这种连宗总头目开发出了平行的算器理论。
但是,海霆真人是正式走入其中了。