宇历三年的时🍁候,离宗和连宗很罕见的达成了全新的共识☛⛮🝳。
一个公式,在离宗算理和连宗算理之中,具备完全一致的内蕴的🙆话,那么,就可以说,这个公式,具备“绝对性”。
这种“绝对性”,毫无👘🉅🄼疑问,🛹♬给予了离宗某种“希望”。
对于他们来说,这简直就是不周之算的灭世一击下,🙥所能找🏯到的最后救赎与唯一福音。
“绝对性”的🍁存在,或许就是在表明,数学实体🙈🈛是在不同的数学公理系统里面普遍存在的。
而如果是这样🍁的话,这个数学实体本身,或许🄨⛫🝓就具有“实际完备”的性质。
这是他们最后的希望了。
或许他🂁们需要寻找到一条新的道路,来探索出这个数学实体🏯的性质。
在这一点🅉上,🍁冯🁴🌧落衣与歌庭派的目的是出奇的一致。
他们甚至暂且放下了些👘🉅🄼许分歧,共同探索这一领域。
而在这一过程之中,海霆真人也终于崭露头角。
自从🐢🁤🇬连宗证明直觉主义逻🌊♀辑不比歌庭派的经典逻辑安全之后,他就好像变了个人一样,沉默而寡言。
而在黎京首创🍁之中♍🖕,他自闭的倾向就更严重了。🙈🈛
但是,这并不妨碍♍🖕他作为一个算学🐁家,继续发光发热。
他从苏君宇的连🁴🌧续统研👘🉅🄼究之中受到启发,引入了冯落衣在无限公理⚫🔕中研究良基集合的成果,创立了全新的流派构造主义。
在某个理论内,以有穷👘🉅🄼个符号,所定义之一切实体,直到反射序列的高度遍历“所有序数的序🖝📨🝚数”,便是一个可构造类。
而可构造公理,便是宣告,良基序列下合法集合所构成的总体,与“可构造性集合🅣🈔♭”,是相等的。
他继承了算君“算学是被构造产物”的思🙟想,却容纳了算君所厌恶的集合论,并且🅣🈔♭在冯落衣良基集合的基础上完成了初步的安全性证明。
定义即构造,构造即证明,证明即路秩。
也正是因为如此,他在算器🏾☆☲理论也小☱有突破,进入千机阁的视野之中🄺🂦。
歌庭派对此有些惊恐。
冯落衣与图灵的存在【或许还可以算上王崎】,使得千机阁这个万法门分支门派,一直都是👩离宗的后花园。
也曾有连宗修士走入过那里,甚至有算君这种连宗🜛🂶总头目开发出了平行的算器理论。
但是,海霆真人是正式走入其中了。