宇历三年的时候,离宗🌭🎯和连宗很罕见的达成了全新的🜮🅠共识。
一个公式,在离宗算理和连宗算理之中,具备完全一致的内🎞蕴的话,那么,就可⛪🝍以说,这个公式,具备“绝对性”。
这种“绝对性”,毫无疑问,给予了离宗🎶🕣某种“希望”。
对于他们🝭🎕🐹来说,这简🁕🅬直就是不周之算的灭世一击下,所能找到的最后救赎与唯一福音。
“⚨绝对性”的存在,或许就是在表明🄞⚕,数学实体是在🜮🅠不同的数学公理系统里面普遍存在的。
而如果是这样的话,这个数学实体本身,🎶🕣或许就🍓🍓具有“实际完备”的性质。
这是他们最后的希望了。
或许他们需要寻找到一条新的道路,来探索出这个数学实体的性🍳🌋质。
在这一点上,冯落衣与歌👫庭派的目的是出奇的一致。
他们甚至暂且🐭放下了些许👫👫分歧,共同探索这一领域。
而在这一过程之中,🁕🅬海霆真人也🄂🞁终于崭露头角。
自从连宗证明直觉主义逻辑不比歌庭派的经典逻辑安全之后,他就好🁴像变了个人一样,沉默而寡言。
而在黎京首创之中,🁕🅬他自闭的倾向就更🔃严🎶🕣重了。
但是,🅦🈷这并不妨碍他作为一🕅个算学家,继🎶🕣续发光发热。
他从苏君宇的连续统研究之中受到启发,引入了🍓冯落衣在无限公理中研究良基集合的成果,创立了全新的流派构造主义。
在某个理论内,以🙊有穷个符号,所定义之一切实体,直到反射序列的高度遍历“所有序数的序数”,便是一个可构造类。
而可构造公理,便是宣告,良基序列下🔃合法集合所构成的总体,与“可构造性集合”,是相等的。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌恶的集合论,并且在冯落衣🜇⛪良基集🟑🜙🂠合的基础上完成了初步的安全性🛎🛏证明。
定义即构造,构造即证明,证明即路秩。
也正是因为如此,他在算器理🁋🄎☁论也小有🔃突破,进入千机阁🅰🏢的视野之中。
歌庭派对此有些惊恐。
冯落衣与图灵的存在【或许还可以🅘算上王崎】,使得千机阁这个万法门分支门派,一直都是离宗的🟑🜙🂠后花园。
也曾有连宗修士走入过那里,🁋🄎☁甚至有算🔃君这种连宗总头目开发出了平行的算器理论。
但是,海霆真人是正式走入其中了。