宇历三年的时候,🎫🔄离宗和连宗很罕见的达成🛥🞣了全新的⛊😫🄗共识。
一🌳🃉🕽个公式,在离宗算理和连宗算理之中,具备完全一致的内蕴的话,那么,就可以说,这个公式,具备“绝对性”。
这种“绝⛷对性”,毫无疑问,给予🙀了离宗某种“希望”。
对于他们来说,这简直就是不周之算的灭世🛥🞣一击下,所能找到的最后救赎与唯🏠🛠一福音。
“绝对性”的存在,或许就是在表明,数学🛥🞣实体是在不同的数学公理系统里面普遍存在的。
而🌳🃉🕽如果是这⛠🛴♀样的话,这个数学实体本身,或许就具有“实际完备”的🚝🔔性质。
这是他们最后的希望了。
或许他⚸🖇们需要寻找到一👈🔤条新的道路,来探索出这👭🌆个数学实体的性质。
在这一点⛷上,冯落衣与歌庭派的目的是出奇的一👭🌆致。
他们甚至暂且放下了些许🄓分歧,共同探索这一领域。
而在这一过程之中,海霆真人也终于崭露头🛥🞣角。
自从连宗证明直觉主义逻辑不比歌庭派的经典逻辑安全之后,他就好像变了个人一样,沉默🛢🞅而寡言。
而在黎京首创之中,他自闭的倾向就🝨🍫更严重了。
但是,这并不妨碍他☽🄶🂂作为一个算学家🝨🍫,继续发光发热⛊😫🄗。
他从苏君宇的连续统研👈🔤究之中受到启发,引入了冯落衣在无限公理中研究良基集合的成果,创立了全新的流派构造主义。
在某个理论内,以🎫🔄有穷个符号,所定义之一切实体,直到反射序列的高度遍🏬🝏历“所🈦有序数的序数”,便是一个可构造类。
而可构造⛷公理,便是宣告,良基序列下合法集合所构⛊😫🄗成的总体,与“可构造性集合🈦”,是相等的。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌恶的集合🙃🇰论,并且在冯落衣良基集合的基础上完成了初步的安全性证明。
定义即构造,构造即证明,证明即路秩。
也正是因为如此,他在算器理论也小有突破,进入千机阁的视野🙇☭之中。
歌庭派对此有些惊恐。
冯落衣与图灵的存在【或许还可以算🝨🍫上王崎】,使得⛊😫🄗千机阁这个万法门分支门派,一直都是离宗的后花园。
也曾有⚸🖇连宗修士走入过那里,甚至有算君这种连宗总头目开发出了平行的算器理论。
但是,海霆真人是正式走入其中了。